Perfect double Roman domination of trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roman domination perfect graphs

A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...

متن کامل

Outer independent Roman domination number of trees

‎A Roman dominating function (RDF) on a graph G=(V,E) is a function  f : V → {0, 1, 2}  such that every vertex u for which f(u)=0 is‎ ‎adjacent to at least one vertex v for which f(v)=2‎. ‎An RDF f is called‎‎an outer independent Roman dominating function (OIRDF) if the set of‎‎vertices assigned a 0 under f is an independent set‎. ‎The weight of an‎‎OIRDF is the sum of its function values over ...

متن کامل

Roman domination excellent graphs: trees

A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...

متن کامل

Co-Roman domination in trees

Abstract: Let G=(V,E) be a graph and let f:V(G)→{0,1,2} be a function‎. ‎A vertex v is protected with respect to f‎, ‎if f(v)>0 or f(v)=0 and v is adjacent to a vertex of positive weight‎. ‎The function f is a co-Roman dominating function‎, ‎abbreviated CRDF if‎: ‎(i) every vertex in V is protected‎, ‎and (ii) each u∈V with positive weight has a neighbor v∈V with f(v)=0 such that the func...

متن کامل

A characterization of trees with equal Roman 2-domination and Roman domination numbers

Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2020

ISSN: 0166-218X

DOI: 10.1016/j.dam.2020.03.021